
pmpd : Physical modelling for Pure Data

Cyrille Henry

cyrille.henry@la-kitchen.fr

 Abstract
pmpd is a collection of objects for pure data (pd). These
objects provide real-time simulations, specially physical
behaviors. pmpd can be used to create natural dynamic
systems, like a bouncing ball, string movement, chaos, fluid
dynamics, sand, gravitation, and more. It can also be used
to create displacements thus allowing a completely dynamic
approach of pd computing. Pmpd can also be used for non-
real-time audio synthesis.
With pmpd physical dynamics can be modeled without
knowing the global equation of the movement. Only the
cause of the movement and the involved structure are
needed for the simulation. pmpd provides the basic objects
for this kind of simulation. By combining pmpd's various
objects one can simulate a very large variety of dynamic
systems.
These object are designed to be used with pd: a real-time
graphical programming environment dedicated for audio
signal processing. Pd's graphical programming
environment is well adapted of the creation of particular
physical modeling. GEM is a pd library dedicated to images
processing. In the provided pmpd examples GEM is used for
the movement visualisation.

 1 Introduction
Physical modelling is widely used in audio and video

synthesis. Physical modelling can be used to not only model
real world dynamics, but also to produce dynamics that are
not found in nature. pmpd is an approach to models made
of particles, which are only one of many possible dynamics
system. This approach is widely used for video animation
and interactive simulation (Castagne and Cadoz 2002).

pd is a real-time programming environment dedicated to
audio synthesis (Puckette 1996). Some pd object already
provide physical modeling, namely for audio synthesis
(Rath, Rocchesso and Avanzini 2002). Since these objects
do not aim to solve general physical modelling problems
and often function at the audio rate, they are not well
adapted to dynamic simulations.

On the other hand, some pd object provide simulation of
complex behaviors, like various chaos objects. This kind of
object can only model one kind of comportment and do not
adapt themselves new and more sophistication dynamic
behaviors and the interaction between numerous dynamic
systems.

pmpd provides a very flexible way to particle physical
modelling simulation and other kind of comportment based
modelling. Using pmpd within the pd programming
environment allows real-time interactions with this
simulation. pmpd allows real-time dynamics computing for
audio and video applications thanks to pd and GEM.
Furthermore, particle positions from real-time control-rate
movement simulation can be recorded and then synthesized
as audio to generate rich physically modeled sounds.

2 Fundamentals
pmpd is a collection of objects for pd. This library is

designed to provide hight level objects (each pmpd object
can be made as pd abstraction). These objects are low level
comportment objects. Assembling these objects can
generate complex behavior due to the interaction among the
basic objects.

pmpd implements the basic objects that allow particle-
base physical modelling (Cadoz, Luciani and Florens 1993).
Very complex behaviors can be simulated without knowing
the global equation of the movement. Only the cause of the
movement and the evolved structure are needed for the
simulation. pmpd can then easily be used for the simulation
of a very large variety of comportment.

Complex simulations are basically made using two kind
of elementary objects: “mass” and “link”.

 2.1 Mass
“mass” objects react like a point mass. It takes forces at

its input, and outputs its position. It moves according to
Newtonian dynamics:

∑F = m α

“mass” objects have inertia, but they have no volume
(they can not rotate). When told they make the summation
of forces applied to their inlet to calculate their acceleration.

“mass” objects have outlets for their internal state; they
report their position, the total force applied to them and their
speed. These parameters can be used to generate control
data for audio and video synthesis.

 2.2 Link
“link” objects take two mass positions and output two

opposite forces depending on the relative position and speed
of the masses. Links are visco-elastic connections between
two masses. The force generated by a visco-elastic link is :

F = K X + D V

where K is the rigidity , D is the damping, X is the
elongation of the link, and V is the relative speed of two
masses.

 2.3 Time discretisation
Velocity at time = t: V(t) is define by:

X(t) – X(t-1)
DT

dT is the small time delta between two consecutive
iterations. Similarly, acceleration at time t is define by:

V(t) – V(t-1)
DT

So :

X(t) = ∑F * C – X(t-2) + 2X(t-1)

where the constant C is given by:

C = dT2

 M

pmpd gives a default value of 1 to dT2 .

This shows how to compute the current position of a
mass while knowing the force applied to it and its last two
positions.

2.4 Units
pmpd does not use specific units. Things are relative: a

mass weighting 10 will react the same way to a force of 1
than a mass of 100 to a force of 10. Although chosing
explicit units is not obligatory, if you choose to use units
they must be consistent, i.e. you chose inches for the
distance unit, then rigidity unit should be force unit divide
by inches.

 2.4 Forces and displacement
To allow real-time interaction, “mass” objects accept

force and displacement messages from the user. pd can then
be use to provide automation or interaction between the user

and the simulation. The extreme modularity of pd can offer
a very large variety of interaction with the simulation.

Masses can also be translated without inertia by to
displacement message. Although this is “non-physical”
behavior it can be useful for different reasons:

-If you know the global equation of a movement, you
can use displacement message to simulate this equation.
-You can use this to create “unnatural” movements of
your desire.

 2.5 Topology
A structure and its components can be modeled

according to the topology, i.e. a defined set of interactions:

different dynamic systems can be modeled using different
topologies.

Figure 1. Two different topology for the same object.

Figure 1 is an example of two different topologies.
Masses are the spheres, link are the white lines. The same
set of masses are linked in two different way. The physical
behavior of this structure will differ according to its
topology (Djoarian 1999).

3 using pmpd with pd

 3.1 Connections
“mass” objects send position and receive force from

“link” objects. “link” objects receive two mass positions
and output forces for both masses.

Figure 2: a small system, and it's equivalent using pmpd and
pd

In figure 2, mass 1 and 3 do not receive forces (inlet are
not connected), therefore they will never move; they act
like a fixed point. Mass 2 is linked to 2 fixed points with
springs with no damping. Hence, movement will never end
(it corresponds with a system without energy loss).

 3.2 Metronome
A time reference is needed to compute the simulation.

pmpd uses an external scheduler; the user has to send a
scheduler event to pmpd object. This mechanism was
chosen purposefully; the desired advantages were:

-You can easily change the speed of the simulation
(adjust on the CPU speed).
-You can stop different parts of the simulation when you
do not need them.
-You can synchronise to video rendering if desired, or
other interactions from the user.

pmpd needs to compute all mass movements together and
all link interactions together, an external metronome is well
adapted to this task.

States of the model are computed in discreet time. i.e.
displacement of a mass is not a function, but a finite serie of
point: X(n). The metronome corresponds with the time
discretization of the equations. The speed of the metronome
should depend on the speed of the movement you want to
simulate. There is no general law to know the metronome
speed, however, the faster the metronome, the faster the
simulation can be. The metronome should be faster than the
highest frequency of the movement you want to simulate.

 3.3 Name
For patching simplification mass and link objects have a

name. It is the first argument for the object creation. It is
used to receive information (pd messages). All masses with
the same name defined a class of mass.

figure 3: sending bang without connection

Figure 3 shows how “bang” messages are pass to a set
of masses and links without creating pd connection. It can
save patching time and should be used for patch
simplification.

 3.4 Interactors objects
Interactor objects behave like link object but provide

patching facility. Essentially, a single object can create an
interaction with an entire class of masses. Interactor objects
must be created with a name. This name is the name of the
masses it is connected to.

Figure 4: sending forces to a class of mass

In Figure 4, all masses are subject to an ambient
constant force. This force can viewed as gravity force
applied to every mass named “foo”. Masses with other
names will not be subject to this interactor. Different
interactor objects provide interactions with a point, a line
and other simple primitives.

 3.4 Test objects
These objects test the position—as well as distance,

speed from a point, a line...—of a mass. Thereby, pd has
access to much informations regarding the state of the
system. This allows interaction with the rest of the patch.
Another test object gives information about the link
(deformation, speed of deformation, orientation...)

Figure 5. “tLink” example

The figure 5 is a 2D string. It shows how to use the
“tLink2D” object to determine the size and orientation of a
rendered link between two spherical masses.

 3.5 Generality
It is possible to choose non-physical values for pmpd

parameters. For example, you can set damping to a negative
value, which mean energies creation. This is not physical
and can lead to instability or saturation of the model, but can
be useful for artistic reason.

You should also take care while changing parameters
like rigidity. This can lead to energy creation or lost,
depending of the deformation of the structure.

The most commonly encountered problem while using
physical modelling is the instability. To reduce the risk of
instability you should slow down your model (increasing the
metronome speed can be necessary to keep the desired
speed of the simulation). Reducing force in the simulation is
usually a good way to attack instability problems.
Initialising masses close to a stable state can also help.

 4 Examples and applications

All of the pmpd objects work with control data (as
opposed to audio signals). This means that they do not
generate audio directly. However, they can easily be used
to control audio engines, i.e.: you can not hear the sound of
a vibrating string because it will not move enough fast; but
you can use the movement of this particles along a string to
perform additive synthesis.

All figure of this articles were made using some of the
pmpd examples f i les . You can download
[http://drpichon.free.fr/pmpd] and try them. The aim of the
provided examples are not necessarily to make artful
graphical effects, but rather to describe possible behaviors
of a system. Trying the examples would give you a better
overview of pmpd possibilities than static pictures.

 4.1 Complex movement

Figure 6. A “ball” interacting with a 3D elastic membrane

The figure 6 shows the deformation of an elastic
membrane due to the interaction of a moving sphere (red
sphere).

Figure 7 : a “flag” in the wind

The figure 7 is a snapshot of the movement of a flag
made with 81 particles. Each particle is link to it's 8
neighbors. They move in 3D. A standard personal computer
is able to compute the movement of this 81 particles at
500Hz which is much more than needed to get a smooth
movement of this structure.

 4.2 Non-real-time sound synthesis

Figure 8 : a moving membrane

The movement of one of the masses in the figure 8
membrane is recorded in the pd environment. Sound can be
produced using this movement by using the recorded
positions as a wave table.

Figure 9. spectrum of a sound generated with pmpd

The figure 9 shows the spectrum of the first few seconds of
the generated sound (the x-axis represents time, the y-axis
represents frequency, darkness represents the amplitude of
the specific frequency). This sound was produced using a
membrane made with 121 masses moving in one dimension.
The masses are distributed over the xy-plane. Initially
random z-positions of the masses generated all of the
movement for the structure. The movement of different
points can be recorded and mixed for generating multi-
chanel sound. Physical properties of the structure can then
be modified to change it's sound (Avanzini and Rocchesso
2001, Sept.).

 4.3 real-time data flow generation

Figure 10. Bouncing “ball”

Figure 10 shows a structure bouncing off a wall. The
internal forces of this structure were used to generate input
for an additive synthesizer. This is an example of a “musical
instrument” whose characteristics are defined by its
topology, physical properties and the relationship between
the structure and the synthesizer.

 4.4 Non linear link
Many physical behaviors, like a hit or a continuous

excitation of a musical instrument can not be modeled with
linear equations (Avanzini and Rocchesso 2001).

Figure 11. using table to allow non linear interaction

Figure 11 shows an example of non linear link. A
simple pd “table” object allows the possibility of non-
linearizing the relationship between the deformation-speed
and the force generated by the link. Such non-linearities can
help model motions like that of a bow on a string, i.e.
Helmholtz motion.

4.5 Perspectives
Pmpd can also be used for other usage: generation of

chaotic movement, filtering control data (a single mass-link
act as a 2nd order filter), rhythmic generation, composition
etc. It is a collection of very simple objects whose mindful
conglomeration can generate a very wide range of
simulations used for many different applications.

References
Avanzini, F. and D. Rocchesso (2001a, Sept.). “Controlling

Material Properties in Physical Models of Sounding Objects”
Proceedings of the International Computer Music Conference

Avanzini, F., Rocchesso, D. (2001) “modelling Collision Sounds:
Non-Linear Contact Force” COST G-6 Conference on Digital
Audio Effects (DAFx01), Limerick, Ireland

Cadoz, C., A. Luciani and J.-L. Florens, (1993) "CORDIS-ANIMA
: a modelling and Simulation System for Sound and Image
Synthesis - The General Formalism", Computer Music Journal
17(1).

Castagne, N. Cadoz, C. (2002). “L’environnement GENESIS :
créer avec les modèles physiques masse-interaction.”,
Journées d'Informatique Musicale, 9e édition, Marseille, 29 -
31 mai 2002

Djoarian, P. (1999). “Material design in physical modelling sound
synthesis” Proc. of the 2nd COST G-6 Workshop on Digital
Audio Effects DAFx99, NTNU, Trondheim, Dec. 9-11, 1999

Puckette, M. S. (1996). “Pure Data: another integrated computer
music environment” Proceedings of the International
Computer Music Conference, 37-41.

Rath, M., Rocchesso, D., Avanzini, F. (2002) “Physically based
real-time modelling of contact sounds” Proceedings of the
International Computer Music Conference

